LES PRIVAT SURABAYA | 085706454663 LES PRIVAT SURABAYA | 081230238023 LES PRIVAT SURABAYA LES PRIVAT SURABAYA | 081703335330

Kamis, 31 Oktober 2013

Konfigurasi Elektron dalam Atom

Konfigurasi Elektron dalam Atom- Konfigurasi elektron dalam atom menggambarkan lokasi semua elektron menurut orbital-orbital yang ditempati. Pengisian elektron dalam orbital-orbital mengikuti aturan-aturan berikut.
1.    Prinsip Aufbau
Elektron akan mengisi orbital atom yang tingkat energi relatifnya lebih rendah dahulu baru kemudian mengisi orbital atom yang tingkat energinya lebih tinggi.

Untuk memberikan gambaran yang jelas bagaimana susunan tingkat energi itu, serta cara penamaannya, dapat dilihat pada bagan di bawah ini.
Untuk memudahkan urutan pengisian tingkat-tingkat energi orbital atom diperlukan bagan berikut.
Bagan 1.1 Urutan pengisian elektron pada orbital-orbital suatu atom
Urutan tingkat energi orbital dari yang paling rendah sebagai berikut.
1s → 2s→2p → 3s → 3p → 4s → 3→ 4p →5s dan seterusnya
2.    Aturan Hund
Pada pengisian orbital-orbital yang setingkat, elektron-elektron tidak membentuk pasangan lebih dahulu sebelum masing-masing orbital setingkat terisi sebuah elektron dengan arah spin yang sama.

Untuk mempermudah penggambaran maka orbital dapat digambarkan sebagai segi empat sedang kedua elektron yang berputar melalui sumbu dengan arah yang berlawanan digambarkan sebagai 2 anak panah dengan arah yang berlawanan, + ½  (searah dengan arah putaran jarum jam) digambarkan anak panah ke atas (­↑), – ½ (berlawanan dengan arah putaran jarum jam) digambarkan anak panah ke bawah (↓).
Untuk elektron tunggal pada orbital s tidak masalah + ½ (­↑) atau – ½ (↓), tetapi jika orbital s tersebut terisi 2 elektron, maka bilangan kuantum spinnya harus + ½ dan – ½ (↑­↓).
Demikian pula untuk pengisian orbital p (l = 1), elektron pertama dapat menempati orbital px, py, atau pz. Sebab ketiga orbital p tersebut mempunyai tingkat energi yang sama.
  • orbital s dengan elektronnya digambar  |­↑­↓|
  • orbital p dengan elektronnya digambar  |­↑­↓|  |­↑­↓|  |­↑­↓|
  • orbital d dengan elektronnya digambar  |­↑­↓|  |­↑­↓|  |­↑­↓|  |­↑­↓|  |­↑­↓|
Perjanjian:

Pada pengisian elektron dalam orbital, elektron pertama yang mengisi suatu orbital ialah elektron yang mempunyai harga spin + ½  dan elektron yang kedua mempunyai harga spin – ½. Berdasarkan pada tiga aturan di atas, maka kita dapat menentukan nilai keempat bilangan kuantum dari setiap elektron dalam konfigurasi elektron suatu atom unsur seperti pada tabel berikut ini.
Elektron ke-
Orbital yang ditempati
Konfigurasi elektron terakhir
        Nilai
keterangan
n
       l
m
s
Aturan Hund
1
1s
1s1
1
 0
0
+ ½
2
1s
1s2
1
 0
0
- ½
3
2s
2s1
2
 0
0
+ ½
4
2s
2s2
2
0
0
- ½
5
2p
2p1
2
1
-1
+ ½
6
2p
2p2
2
1
0
- ½
7
2p
2p3
2
1
+1
+ ½
8
2p
2p4
2
1
-1
- ½
9
2p
2p5
2
1
0
+ ½
10
2p
2p6
2
1
+1
- ½
 Sumber: Brady, General Chemistry Principle and Structure
Orbital penuh dan setengah penuh

Konfigurasi elektron suatu unsur harus  menggambarkan sifat suatu unsur. Hasil eksperimen menunjukkan bahwa sifat unsur lebih stabil apabila orbital dalam suatu atom unsur terisi elektron tepat ½ penuh atau tepat penuh, terutama orbital-orbital d dan f (5 elektron atau 10 elektron untuk orbital-orbital d dan 7 elektron atau 14 elektron untuk orbital-orbital f). Apabila elektron pada orbital d dan f terisi elektron 1 kurangnya dari setengah penuh/penuh, maka orbital d/f tersebut harus diisi tepat ½  penuh/tepat penuh. Satu elektron penggenapnya diambil dari orbital s yang terdekat.
Contoh:
Konfigurasi elektron:
24Cr: 1s2 2s2 2p6 3s2 3p6 4s1 3d5
bukan: 1s2 2s2 2p6 3s2 3p6 4s2 3d4
Begitu pula konfigurasi elektron:
29Cu adalah 1s2 2s2 2p6 3s2 3p6 4s1 3d10
bukan: 1s2 2s2 2p6 3s2 3p6 4s2 3d9
Konfigurasi elektron ion positif dan ion negatif

Misalnya konfigurasi elektron ion K+ dan ion Cl
19K: 1s2 2s2 2p6 3s2 3p6
Bila atom K melepaskan 1 elektron maka terjadi ion K+ yang mempunyai jumlah proton 19 dan elektron 19 – 1 = 18
Konfigurasi elektron ion K+: 1s2 2s2 2p6 3s2 3p6
17Cl: 1s2 2s2 2p6 3s2 3p5
Bila atom Cl menerima 1 elektron maka terjadi ion Cl yang mempunyai jumlah proton 17 dan elektron 17 + 1 = 18
Konfigurasi elektron ion Cl: 1s2 2s2 2p6 3s2 2p5
Konfigurasi elektron ion K+ = ion Cl = atom Ar, peristiwa semacam ini disebut isoelektronis. Konfigurasi elektron yang tereksitasi Konfigurasi elektron yang telah dibicarakan di atas adalah konfigurasi elektron dalam keadaan tingkat dasar. Konfigurasi elektron yang tereksitasi adalah adanya elektron yang menempati orbital yang tingkat energinya lebih tinggi.
3.    Larangan Pauli

Menurut prinsip ini dalam suatu atom tidak boleh ada 2 elektron yang mempunyai keempat bilangan kuantum yang sama harganya, jika 3 bilangan kuantum sudah sama, maka bilangan kuantum yang keempat harus berbeda.
Contoh:


Rabu, 30 Oktober 2013

Struktur Tubuh Virus

Virus merupakan organisme subselular yang karena ukurannya sangat kecil, hanya dapat dilihat dengan menggunakan mikroskop elektron. Ukurannya lebih kecil daripada bakteri. Karena itu pula, virus tidak dapat disaring dengan penyaring bakteri.
Partikel virus mengandung DNA atau RNA yang dapat berbentuk untai tunggal atau ganda. Bahan genetik kebanyakan virus hewan dan manusia berupa DNA, dan pada virus tumbuhan kebanyakan adalah RNA yang beruntai tunggal. Bahan genetik tersebut diselubungi lapisan protein yang disebut kapsid. Kapsid bisa berbentuk bulat (sferik) atau heliks dan terdiri atas protein yang disandikan oleh genom virus.
Untuk virus berbentuk heliks, protein kapsid (biasanya disebut protein nukleokapsid) terikat langsung dengan genom virus. Misalnya, pada virus campak, setiap protein nukleokapsid terhubung dengan enam basa RNA membentuk heliks sepanjang sekitar 1,3 mikrometer. Komposisi kompleks protein dan asam nukleat ini disebut nukleokapsid. Pada virus campak, nukleokapsid ini diselubungi oleh lapisan lipid yang didapatkan dari sel inang, dan glikoprotein yang disandikan oleh virus melekat pada selubung lipid tersebut. Bagian-bagian ini berfungsi dalam pengikatan pada dan pemasukan ke sel inang pada awal infeksi.
Kapsid virus sferik menyelubungi genom virus secara keseluruhan dan tidak terlalu berikatan dengan asam nukleat seperti virus heliks. Struktur ini bisa bervariasi dari ukuran 20 nanometer hingga 400 nanometer dan terdiri atas protein virus yang tersusun dalam bentuk simetri ikosahedral. Jumlah protein yang dibutuhkan untuk membentuk kapsid virus sferik ditentukan dengan koefisien T, yaitu sekitar 60t protein. Sebagai contoh, virus hepatitis B memiliki angka T=4, butuh 240 protein untuk membentuk kapsid. Seperti virus bentuk heliks, kapsid sebagian jenis virus sferik dapat diselubungi lapisan lipid, namun biasanya protein kapsid sendiri langsung terlibat dalam penginfeksian sel.
Partikel lengkap virus disebut virion. Virion berfungsi sebagai alat transportasi gen, sedangkan komponen selubung dan kapsid bertanggung jawab dalam mekanisme penginfeksian sel inang.
Jenis-Jenis Struktur Virus
• Virus Berselubung
• Virus Kompkeks
• Virus Telanjang
Perbandingan Ukuran Virus

Selasa, 29 Oktober 2013

Materi Biologi Kelas X Reproduksi Virus

Virus hanya dapat berkembang biak pada sel atau jaringan hidup. Oleh karena itu, virus menginfeksi sel bakteri, sel hewan, atau sel tumbuhan untuk bereproduksi. Cara reproduksi virus disebut proliferasi atau replikasi. 
Pada Bakteriofage reproduksinya dibedakan menjadi dua macam, yaitu daur litik dan daur lisogenik. Pada daur litik, virus akan menghancurkan sel induk setelah berhasil melakukan reproduksi, sedangkan pada daur lisogenik, virus tidak menghancurkan sel bakteri tetapi virus berintegrasi dengan DNA sel bakteri, sehingga jika bakteri membelah atau berkembangbiak virus pun ikut membelah. 
Pada prinsipnya cara perkembangbiakan virus pada hewan maupun pada tumbuhan mirip dengan yang berlangsung pada bakteriofage, yaitu melalui fase adsorpsi, sintesis, dan lisis.
a. Infeksi secara litik/daur litik
    Daur litik melalui fase-fase berikut ini:
1. Fase adsorpsi dan infeksi
Dengan ujung ekornya, fag melekat atau menginfeksi bagian tertentu dari dinding sel bakteri, daerah itu disebut daerah reseptor (receptor site : receptor spot). Daerah ini khas bagi fag tertentu, dan fag jenis lain tak dapat melekat di tempat tersebut. Virus penyerang bakteri tidak memiliki enzim-enzim untuk metabolisme, tetapi rnemiliki enzim lisozim yang berfungsi merusak atau melubangi dinding sel bakteri.
Sesudah dinding sei bakteri terhidrolisis (rusak) oleh lisozim, maka seluruh isi fag masuk ke dalam hospes (sel bakteri). Fag kemudian merusak dan mengendalikan DNA bakteri.
2. Fase Replikasi (fase sintesis)
DNA fag mengadakan pembentukan DNA (replikasi) menggunakan DNA bakteri sebagai bahan, serta membentuk selubung protein. Maka terbentuklah beratus-ratus molekul DNA baru virus yang lengkap dengan selubungnya.
3. Fase Pembebasan virus fag - fag baru / fase lisis
Sesudah fag baru terbentuk, sel bakteri akan pecah (lisis), sehingga keluarlah fag yang baru. Jumlah virus baru ini dapat mencapai sekitar 200. Pembentukan partikel bakteriofag memerlukan waktu sekitar 20 menit. 
 
b. Infeksi secara lisogenik/daur lisogenik
    Daur lisogenik melalui fase-fase berikut ini:
1. Fase adsorpsi dan infeksi
Fag menempel pada tempat yang spesifik. Virus melakukan penetrasi pada bakteri kemudian mengeluarkan DNAnya ke dalam tubuh bakteri.
2. Fase penggabungan
DNA virus bersatu dengan DNA bakteri membentuk profag. Dalam bentuk profag, sebagian besar gen berada dalam fase tidak aktif, tetapi sedikitnya acla satu gen yang selalu aktif. Gen aktif berfungsi untuk mengkode protein reseptor yang berfungsi menjaga agar sebagian gen profag tidak aktif.
3. Fase pembelahan
Bila bakteri membelah diri, profag ikut membelah sehingga dua sel anakan bakteri juga mengandung profag di dalam selnya. Hal ini akan berlangsung terus-menerus selama sel bakteri yang mengandung profag membelah. Jadi jelaslah bahwa pada virus tidak terjadi pembelahan sel, tetapi terjadi penyusunan bahan virus (fag) baru yang berasal dari bahan yang telah ada dalam sel bakteri yang diserang.
 
Beberapa perbedaan daur litik dan lisogenik:
 Siklus/daur litik
• Waktu relatif singkat 
• Menonaktifkan bakteri 
• Berproduksi dengan bebas tanpa terikat pada kromosom bakteri
 Siklus/daur lisogenik 
• Waktu relatif lama 
• Mengkominasi materi genetic bakteri dengn virus 
• Terikat pada kromosom bakteri

Senin, 28 Oktober 2013

EUBACTERIA & ARCHAEBACTERIA ; Ciri-Ciri Bakteri dan Struktur Tubuh Bakteri



Ciri-Ciri Bakteri
Bakteri memiliki ciri-ciri yang membedakannnya dengan mahluk hidup lain yaitu :
1. Organisme multiselluler
2. Prokariot (tidak memiliki membran inti sel )
3. Umumnya tidak memiliki klorofil
4. Memiliki ukuran tubuh yang bervariasi antara 0,12 s/d ratusan mikron umumnya memiliki ukuran rata-rata 1 s/d 5 mikron.
5. Memiliki bentuk tubuh yang beraneka ragam
6. Hidup bebas atau parasit
7. Yang hidup di lingkungan ekstrim seperti pada mata air panas,kawah atau gambut dinding selnya tidak mengandung peptidoglikan
8. Yang hidupnya kosmopolit diberbagai lingkungan dinding selnya mengandung peptidoglikan


Struktur Tubuh Bakteri


1. Kapsul dan lapisan lendir
Kapsul adalah selaput licin yang terdiri dari polisakarida dan terletak di luar dinding sel. Kapsul merupakan bagian asesori dari bakteri berfungsi melindungi bakteri dari suhu atau kondisi lingkungan yang ekstrim dan sebagai tempat penumbunan nutrien.. Tidak semua sel bakteri memiliki kapsul. Hanya bakteri yang patogen yang memiliki kapsul.
2. Flagela
Alat gerak pada bakteri berupa flagela atau bulu cambuk adalah struktur berbentuk batang atau spiral yang menonjol dari dinding sel. Flagela memungkinkan bakteri bergerak menuju kondisi lingkungan yang menguntungkan dan menghindar dari lingkungan yang merugikan bagi kehidupannya. Flagela adalah struktur kompleks yang tersusun atas bermacam-macam protein termasuk flagelin yang membuat flagela berbentuk seperti tabung cambuk dan protein kompleks yang memanjangkan dinding sel dan membran sel untuk membentuk motor yang menyebabkan flagela berotasi. Flagela berbentuk seperti cambuk. Flagela digunakan bakteri sebagai alat gerak. Flagella memiliki jumlah yang berbeda-beda pada bakteri dan letak yang berbeda-beda pula yaitu:
1. Monotrik : bakteri yang memiliki sebuah flagel pada satu ujungnya.
2. Lofotrik : bakteri yang pada satu ujungnya memiliki lebih dari satu flagel.
3. Amfitrik : bakteri yang pada kedua ujungnya hanya terdapat satu buah flagel.
4. Peritrik : bakteri yang memiliki flagel pada seluruh permukaan tubuhnya.



3. Dinding sel
Fungsi dinding sel pada prokaryota, adalah melindungi sel dari tekanan turgor yang disebabkan tingginya konsentrasi protein dan molekul lainnya dalam tubuh sel dibandingkan dengan lingkungan di luarnya. Dinding sel bakteri berbeda dari organisme lain. Dinding sel bakteri mengandung peptidoglikan yang terletak di luar membran sitoplasmik. Peptidoglikan berperan dalam kekerasan dan memberikan bentuk sel. Ada dua tipe utama bakteri berdasarkan kandungan peptidoglikan dinding selnya yaitu Gram positif dan Gram negatif.
4. Membran sel
Tersusun atas molekul lemak dan protein. Membran sel bersifat semipermeable dan berfungsi untuk mengatur keluar masuknya zat ke dalam sel.
5. Sitoplasma
Sitoplasma tersusun atas koloid yang mengandung berbagai molekul organik seperti karbohidrat, lemak, protein, dan mineral-mineral. Sitoplasma merupakan tempat berlangsungnya reaksi metabolik.


6. Granula
Granula berfungsi sebagai tempat penyimpanan cadangan makanan karena bakteri menyimpan cadangan makanan yang dibutuhkan.

7. Kromosom
Tidak seperti eukaryota, kromosom bakteri tidak dikelilingi membran-bound nucleus melainkan ada di dalam sitoplasma sel bakteri. Ini berarti translasi, transkripsi dan replikasi DNA semuanya terjadi di tempat yang sama dan dapat berinteraksi dengan struktur sitoplasma lainnya, salah satunya ribosom.
8. Vakuola gas
Dengan mengatur jumlah gas dalam vakuola gasnya, bakteri dapat meningkatkan atau mengurangi kepadatan sel mereka secara keseluruhan dan bergerak ke atas atau bawah dalam air.
9. Pili dan fimbria
Fimbria adalah tabung protein yang menonjol dari membran pada banyak spesies dari Proteobacteria. Fimbria umumnya pendek dan terdapat banyak di seluruh permukaan sel bakteri. Struktur pili mirip dengan fimbria dan ada di permukaan sel bakteri

10. Plasmid
Kebanyakan bakteri memiliki plasmid. Plasmid dapat dengan mudah didapat oleh bakteri. Namun, bakteri juga mudah untuk menghilangkannya. Plasmid dapat diberikan kepada bakteri lainnya dalam bentuk transfer gen horizontal.
11. Ribosom
Semua prokaryota memiliki 70S (di mana S = satuan Svedberg) ribosom sedangkan eukaryota memiliki 80S ribosom pada sitosol mereka.

12. Endospora
Endospora bentuk istirahat dari beberapa jenis bakteri gram positif dan terbentuk didalam sel bakteri jika kondisi tidak menguntungkan bagi kehidupan bakteri. Endospora mengandung sedikit sitoplasma, materi genetik, dan ribosom. Dinding endospora yang tebal tersusun atas protein dan menyebabkan endospora tahan terhadap kekeringan, radiasi cahaya, suhu tinggi dan zat kimia. Jika kondisi lingkungan menguntungkan endospora akan tumbuh menjadi sel bakteri baru, misal pada bakteri Clostridium dan Basilus.